工业X-ray 断层扫描术以及在能源材料研究

工业X-ray 断层扫描术以及在能源材料研究

X-ray 断层扫描术,英文称为 X-ray computed tomography X-ray CT是一种利用射线照射并穿透待测样品形成明暗衬度的研究技术。其基本思路类似于医院的脑CT 但是不同之处在于,脑CT 的设备通过detector的旋转对病人脑部进行切片扫描重构,而材料学领域的CT 是通过旋转样品(一般360°)进行扫描,如图1.  X-ray CT 的成像原理是根据待测样品内部不同相和成分的密度以及原子系数的不同,对X射线的吸收能力有强有弱从而造成成像的明暗差别,进行不同组分的分析。举个例子,扫描一个打过钢钉的人体骨骼。研究对象有骨骼,钢钉,骨骼内部的裂纹,那么在最终的成像上,亮度强弱依次是钢钉骨骼裂纹。 X-ray CT的核心就是通过这种明暗亮度的差别可以把材料内部的不同组分分开,进行分别表征。

 

 

1  X - ray CT的简化运行示意图

所示被扫试样的某一个高度上的切面图(xz面)。整个样品扫描一次会旋转360°,一般会照2000张照片 (也就是每转0.18°照一张照片)。成像detector 会把这2000个不同角度的信号记录下来,如图2所示,扫描结束以后会进行反向投影,然后重构,如图3所示。如果成像接收的detector 方向有2000个像素,那么就会有2000个这样的xz 切片进行同时重构,最后上下叠在一起形成一个三维的扫描图,如图4.

 

 

2   xz平面切片X-ray 扫描示意图

 

 

3  接受到的不同角度的信号进行反向投影重构

 

 

4 X-ray CT 从扫描得到的照片经过切片重构最后得到3D 图像

 

2. 产品和基本参数

现在这个领域国际市场基本被几家大公司垄断,主要是Zeiss, Nikon, GE, North Star Imaging 等等。每家公司都有自己的独特产品,但是主要结构都大同小异,有的只是在一些成像锐度,成像分辨率上有差别,当然,价格也会不同。现在的CT 主要分为工业CT, 医学CT,还有高校CT 三大类。其中工业CT 市场主要被Nikon  North Star Imaging 这两家占有。他们家有大功率高能量大型负载扫描配件,能够扫穿几十厘米甚至一米以上的厚度的金属件,分辨率能够达到10 ~ 100 um,对于工业制造,探伤和3D 打印领域有非常广泛的应用。

3. 应用

X-ray CT 在工业和学术还有医学的领域应用非常非常广泛,比如裂纹的扩展,断裂,样品内部组织观察,孔隙率分析,孔道的三维分布,大小等等。每年通过CT技术发表的学术研究论文呈现井喷的态势。那么X-ray CT 在能源领域的应用有哪些?下面就结合本人的一些研究经历进行简短介绍:

3.1 材料宏观和显微结构表征

618650 电池扫描结果和表征。de是扫描得到的灰度图,集流体是金属,所以吸收能力强,呈现亮色,阴极是锂化合物,包着集流器,阳极是碳,由于碳吸收能力太弱,和金属化合物一起扫描,几乎是透明的,和空气差不多。通过对不同灰度的组分进行分割和筛选,可以把各个组分单独隔离表征。比如b,c中绿色部分是集流体,咖啡色的是金属外壳。可以很容易得到集流体的体积,面积,还有电极材料的体积,面积等等。

 

 

6

7左图和右图是电池在热失控前和热失控后内部结构的变化,我们 可以从这个切片图上明显看到热失控导致的内部结构坍塌和破坏。如果这个角度看的信息有限,我们可以切换到侧面图,如图8.

 

 

从图8可以看到电池的破坏是从外部开始的。局部温度升高,热应力和压力导致裂纹从局部开始生长,然后传递性的往内部挤压,造成更多电极破坏失效。这些观察到的现象都是在电池边工作的情况下边扫描完成的。可见X-ray CT 这种无损的实时探测形式,对内部的破坏机制的研究是非常有效的。

 

9显示的是外界加热情况下电池运行过程中热失控发生以后内部结构的变化,可以看到Cu已经被融化并且坍塌,大部分的电极材料随着内部气压喷射到电池外。

 

9

除了进行宏观结构变化的观测,在更高的分辨率下,我们还可以进行电极内部显微结构(microstructure)的表征,比如图10是负极材料在扫描过程中,以及重构以后看到的3D成像。我们可以清晰的看到并且测定碳颗粒的分布以及大小,孔隙率等等 (扫描分辨率为64 nm)。对后续材料的优化有很大的指导意义。

 

10

除了锂电以外,固体燃料电池内部结构也能清晰反映出来。图11左上显示的是固体燃料电池里面的Ni(深灰)YSZ(白)和气孔。通过灰度值进行区分,我们可以把三相的分布区分开来,进行体积分数,界面面积,孔隙率,颗粒大小,孔道大小的测量。图11坐下是孔道的三维结构图,颜色从蓝色到红色表示孔道从小到大。右下图表示三相界面triple phase boundary 的分布(黄色)。三相界面对于电流密度还有能量密度有至关重要的意义。

 

 

11

3.2 材料性能模拟

X-ray CT 的另外一个重要应用就是材料的性能模拟。和一些仿真方法不同,X-ray CT 拥有对材料结构高准确度的还原,这就能让研究者摆脱通过CAD 建模这样的传统路径,直接运用真实的材料结构进行建模仿真,更加具有代表性和说服力,也可以和材料的其他电化学性能结合在一起进行分析,从而达到优化结构,预测性能的目的。

以下简单举几个例子:

13左侧是固体燃料电池阳极内部孔道结构的3D重构图,通过对它进行网格化,可以进行气体传质的模拟以及热学模拟,从而可以提取一些结构参数,比如孔道扭曲度tortuosity,紧缩度 constrictivity 等等。左下角的图能看到热流流线上有红色的高速区域,代表着局部孔道过小,可能会造成浓差极化,是可以进行下一步优化的方向。

 

 

13

14左上是锂电NMC阴极颗粒的3D 成像,通过对实体进行网格划分,我们可以进行一个多物理场模拟(锂离子,电子流动,电势场,浓度场),设置适当地边界条件得到阴极颗粒内部嵌Li随时间的关系,也可以进行局部电流密度和材料结构之间关系的研究。举个例子,读者完全可以做出几种不同的NMC电极,不同的孔隙率,不同的活性材料配比,通过进行三维建模,看到颗粒大小和嵌入Li的浓度之间的关系,或者孔隙率,孔道大小和倍率性能之间的关系,得出参数化结论,并且能够进行性能预测。这些结果对做出高安全性,高倍率性能,高循环性能和高能量密度的电极材料有非常重要的指导意义。

 

14

以上就是X-ray CT 技术以及它的主要应用的介绍。由于时间实在有限,写的比较粗略。主要是希望能给大家提供新的思路还有方法,帮助解决问题。如果有兴趣的读者不妨可以去搜索 一下更多文献。 谢谢大家的时间。

 

东莞市众晓电子科技有限公司专业经营各品牌X-RAY设备买卖、租赁、配件供应、维修服务、检测等业务,是目前全国较大及较早的一家X-RAY设备供应商。代理的品牌有GEDAGENikonx-eye等,欢迎电话咨询13650100102 江生